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A random forest model of ULF wave power

Poster Contents Summary:

Part I: Background

What are ULF waves. Future model uses.

Part II: The Model

We use a machine learning technique (random forests) to 

predict ULF wave power spectral density (PSD). 

Part III: Getting physics from                   

parameterised models

Not all physics can be extracted. We                                    

suggest a hypothesis testing technique.

Part IV: Example Physics Results

Applying the hypothesis testing method:

Context

Ultra-low frequency (ULF) waves are magnetosphere-scale oscillations, with periods of minutes to hours. They affect the

energisation and transport of electrons in Earth’s radiation belts. (Fig. 1)

Our model of ULF waves will allow us to

• Investigate global magnetospheric dynamics

• Estimate radial diffusion coefficients, which are a vital component

of radiation belt forecasts used to protect spacecraft.

• Investigate azimuthal (magnetic local time, MLT) variation at

higher, more appropriate resolution than previously.

Our model uses variable bins to mitigate several

difficulties inherent to space physics data

(sparseness, interdependent driving

parameters, nonlinearity) to produce an

approximation of ULF wave power spectral

density depending on the incoming solar wind.

PART I: SUMMARY & CONTEXT

Summary

• Our freely available model predicts magnetospheric ULF

wave power (1-15mHz) using solar wind properties.

• We explain why not all physical processes can be extracted

from parameterised models, and outline a hypothesis

testing framework to iteratively explore driving.

• We use our model to investigate the dawn-dusk power

asymmetry. We also find that magnetospheric compression

and internal processes should be included in future.
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Fig. 1 (a) Perturbations at the magnetopause can

drive ULF plasma waves that propagate inwards and

couple with the dipole magnetic field. Internal wave

sources exist but contribute far less to low

frequencies. (b) Earth’s radiation belts contain high-

energy particles hazardous to spacecraft.

(a) (b)

(Credit: Bentley, 
https://doi.org/10.17864/1926.85255)

(Credit: R.V. Hilmer, Air Force Research Laboratory)

1. The dawn-dusk wave power asymmetry is a combined

effect of radial density profiles and magnetopause

perturbations.

2. var(Np) does not represent wave driving by

magnetopause perturbations.

3. Nor does Bz, which likely represents wave power

increases with substorms.

4. The internal state of the magnetosphere adds

significant uncertainty. It should be included in future.
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Our model

We predict ULF wave PSD across 1-15mHz, for each horizontal component, using four

CARISMA ground stations at different latitudes (L~4.21 to 7.94), using magnetic local

time and solar wind speed, Bz and variance of proton number density from OMNI Web.

Model testing

Before training final models on the full 1990-2005 dataset, we estimate mean square

error using subsets. Largest and smallest median MSE were 0.68 and 0.13 log10(PSD)

(nT)2/Hz respectively.

We compare different models using forecasting skill. (Table 1) Decision tree ensembles

perform best.

The model is available via Zenodo, including full documentation and usage examples.

What is a random forest?

Decision trees predict continuous variables by iteratively splitting bins along input

(driving) parameters based on mean square error (MSE) in the value being predicted.

Example: if power spectral density (PSD) is greater with increasing solar wind speed, an

initial decision may be to create two bins split at vsw ~ 450 km s-1.

Random forests (decision tree ensembles) are used to reduce variance and generalise

well to new data. Each ensemble contains 256 trees trained on different subsets of the data

(drawn with replacement). The final predicted value is the mean output of all 256 trees.

Benefits:

• Variable bins mean large bins for sparse data points, they also capture rapid changes in

power, e.g. at Bz=0 , Fig 2(c)

• No assumption that power is linear along input parameters; power is represented using a

series of step functions, Fig 2(b).

PART II: THE MODEL

Fig2. (a) a visualisation of a tree: each branch is a choice

to split bins along an input parameter. (b) a 1-d decision

tree model (black) fitted to a continuous variable (y=x”

+ error). (c) A 2-d visualisation of one of our trees. Bins

overly original input data points. Colour roughly

corresponds to power, from low (blue) to high (green).

(a) (b)

(c)

𝑆𝑘𝑖𝑙𝑙 = 100 1 −
𝑀𝑆𝐸1
𝑀𝑆𝐸2

Model tested Skill

Random forest 81.2

Previous model[2] 78.0

24 h lag 37.4

1 h lag 73.9

Table 1 Positive skill scores indicate

that the tested model is better than a

reference model (here, a “random”

model sampling the original power

distribution). Decision tree ensembles

outperform the previous model and

using time lags of either 24h or 1h. We

show results for GILL 3.33 mHz.

Fig 3. Many model settings

were tested and ranked by

their mean square error

(MSE, calculated using 5-fold

cross-validation). We use

min_samples_per_leaf = 18

and maximum_depth = 11 to

minimise the MSE.

[𝒇𝒓𝒆𝒒, 𝒍𝒂𝒕𝒊𝒕𝒖𝒅𝒆, 𝒄𝒐𝒎𝒑. ,𝑴𝑳𝑻, 𝒗𝒔𝒘,𝑩𝒛, 𝒗𝒂𝒓 𝑵𝒑 ] → 𝑷𝑺𝑫
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A parameterised model

Our random forests are parameterised models that approximate the average value of power

as a surface, (a single value in our chosen parameter space) with all contributing processes

compounded together.

A model that successfully represents the physical output is not necessarily well suited to

investigating individual contributing processes.

PART III: GETTING PHYSICS FROM PARAMETERISED MODELS

[𝒇𝒓𝒆𝒒, 𝒍𝒂𝒕𝒊𝒕𝒖𝒅𝒆, 𝒄𝒐𝒎𝒑. ,𝑴𝑳𝑻, 𝒗𝒔𝒘,𝑩𝒛, 𝒗𝒂𝒓 𝑵𝒑 ] → 𝑷𝑺𝑫

Difficulties extracting physics

Assuming one can extract all underlying physical processes is equivalent to assuming each

process adds linearly to the final PSD. In fact our approximation is strongly nonlinear:

driving parameters depend on each other, and driving processes are related to multiple

parameters and processes.

• May only be able to extract dominant driving processes: lesser processes may be

indistinguishable in the final, convolved PSD.

Solution: Iterative hypothesis testing.

• Choice of parameters: To disentangle these processes in analysis, parameter axes must

directly relate to PSD.

Solution: Use three dominant solar wind parameters causally correlated to ULF PSD.

• Uncertainty is useful: it tells us where in parameter space represents the physics is less

well represented.

Solution: Include hypotheses about uncertainty.

• Bias and interdependence often eclipse individual processes. For example, our model

inherently includes pre-Earth solar wind processing.

Solution: Cannot be fully solved. Mitigated by parameter choice and variable bins.

Physics via successive hypothesis testing

We suggest a hypothesis testing framework to examine the physics driving ULF wave power.

This formalises the approach taken in full statistical surveys, beginning with dominant

driving processes, testing how they manifest in the model, and then examining remaining

power.

Fig 4. Our suggested hypothesis testing framework.
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Hypothesis testing #1: MLT variation

We test whether the well-documented dawn-dusk wave power asymmetry is due to the

combined effect of magnetopause perturbations and different radial plasma density profiles.

In summary, if we see this signature for one (but not all) of the driving parameters which

correspond to magnetopause perturbations, we can accept the hypothesis that this is due

to the combined effect listed above. We see this signature for vsw (corresponding to Kelvin-

Helmholtz instabilities, Fig. 5) but not for Bz or var(Np). (Full results & logic available in paper)

Hypothesis testing #2: Uncertainty

We also test our assumptions about what additional physics we believe needs to be included.

In fact we find that other physics may be missing instead. (Fig. 6)

Uncertainty results summary:

• Bz>0 has greater uncertainty. This is probably because there is larger variability in

substorm occurrence for Bz>0 than Bz<0, so Bz<0 is an better hourly substorm proxy.

• Greatest remaining uncertainty is found for Bz>0, low vsw and low var(Np), i.e. when there

is the least solar wind driving. This suggests that the configuration of the magnetosphere

and internal processes are secondary effects that should be included in future.

Dawn-dusk asymmetry results summary:

• The dawn-dusk wave power asymmetry is a combined effect of the different radial 

density profiles and wave driving from magnetopause (“external”) perturbations such 

as Kelvin-Helmholtz instabilities. 

• We cannot account for the effects of a compressed magnetosphere, but var(Np) does 

not represent wave driving by magnetopause perturbations. 

• Nor does Bz, which instead likely represents wave power increases with substorms.

PART IV: EXAMPLE PHYSICS RESULTS

Fig. 5: Variation of power with solar wind speed vsw and MLT in our 

model at constant Bz and var(Np) for four stations (a) FCHU 

(L~7.94), (b) GILL (L~6.51), (c)ISLL (L~5.40) and (d) PINA (L~4.21). 

The dawn asymmetry is larger for higher latitude stations.

We accept the hypothesis: that these are from Kelvin-Helmholtz

instabilities, and that this asymmetry is a signature of

magnetopause perturbations processed by the radial density

profiles.

Similar profiles are not found for other parameters Bz, var(Np).

Fig. 6: Remaining uncertainty by parameter and MLT for constant, median speed, Bz and var(Np) values (421

km s-1 , -1.8 and 1.7 nT, and -0.716 log 10 (cm-3 ) respectively. (a) Uncertainty at speed quantiles for each MLT

(quantile values shown in the corner bar) at constant Bz and var(Np). (b) uncertainty for Bz < 0 at median

values of speed and var(Np), (c) is uncertainty for var(Np) by MLT. (d)-(f) show the same for Bz > 0.

Example Hypothesis 2: As we do not include substorms in our

parameterisation, the greatest remaining uncertainty will be in the

midnight sector and uncertainties will be larger for Bz < 0 than Bz > 0.

B
z<

0
B

z>
0

Example Hypothesis 1: Waves driven by external magnetopause

perturbations, particularly large amplitude ones, will have more power

in the dawn sector. This asymmetry will be larger at higher latitudes.


